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ISOSUBGROUP, the newest member of the ISOTROPY Software Suite (http://

iso.byu.edu), generates isotropy subgroups of crystallographic space groups

based on superpositions of multiple irreducible representations, along with a

wealth of information about each one. Like the original ISOTROPY program,

its scope is general rather than being restricted to common types of order

parameters of a user-specified parent structure. But like the newer ISODIS-

TORT program, its user-friendly interface has menu-driven selections. This

combination of features has been oft requested but unavailable until now.

Program output includes information about the subgroup symmetry, ferroic

species, phase-transition continuity, active k vectors, domains and secondary

order parameters.

The methods of group representation theory have been

applied with much success to many different areas of crys-

tallography (Landau & Lifshitz, 1969; Bradley & Cracknell,

1972; Perez-Mato et al., 2010; Kerman et al., 2012). Over the

years, we have been developing tools in the ISOTROPY

Software Suite (http://iso.byu.edu) that apply such methods to

explore a variety of distortions in crystals, including those that

appear in real structural phase transitions. By ‘distortions’, we

mean to include any physical change that lowers the symmetry

of the crystal in a well defined way, such as lattice strains,

atomic displacements, magnetic ordering, occupational

ordering etc.

The centerpiece of these group theoretical methods is the

irreducible representation (IR), which maps the space-group

operators g onto a set of n-dimensional square matrices DðgÞ.

It is a well known but still remarkable fact that any crystal

distortion can be decomposed or expanded as a linear

combination of IR basis functions. We call these basis func-

tions ‘symmetry modes’. They are modes that extend

throughout the entire crystal. In the case of displacive

symmetry breaking, for example, each IR symmetry mode is a

pattern of atomic displacements. Symmetry modes come in

groups of n: f’1; ’2; . . . ; ’ng, one for each dimension of the IR

they belong to. These n symmetry modes are related by

symmetry operators g in the parent:

g’i ¼
Pn

j¼1

’jDjiðgÞ; ð1Þ

which means that they transform like the columns of the IR

matrices under the parent symmetry operations.

Let

’ ¼
Pn

i¼1

�i’i ð2Þ
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be the contribution to the overall distortion from a specific set

of symmetry modes belonging to an n-dimensional IR. The n-

dimensional vector g consisting of the coefficients of the

decomposition is called the order parameter of the IR. When

its components are treated as abstract variables, we refer to it

as the order parameter direction (OPD) within the space of

possible IR-generated distortions. The OPD indicates any

symmetry relationships that might exist between its compo-

nents, and thereby indicates special constraints on how the

corresponding symmetry modes of the IR are to be combined.

The special ða;�a; 0; 0Þ OPD, for example, indicates a

significantly smaller degree of symmetry breaking than the

general ða; b; c; dÞ OPD.

Combining equations (1) and (2), we obtain the result of the

operation of g on a distortion,

g’ ¼
Pn

i¼1

Pn

j¼1

DjiðgÞ�i’j ¼
Pn

j¼1

ðg�Þj’j; ð3Þ

where

g� ¼ DðgÞ� ð4Þ

so that the operation of g on the distortion can

be viewed as an operation on the OPD rather

than the symmetry modes themselves.

For a given IR and OPD (g), the space group

G of the distorted structure consists of all

symmetry operators g of the parent space group

G0 which satisfy DðgÞg ¼ g. We refer to G as an

isotropy subgroup (ISG) of G0. Two OPDs, g1

and g2, are said to be equivalent if there exists a

parent symmetry operator g such than g2 ¼ gg1.

Their corresponding ISGs are also equivalent.

For a given space-group IR, the list of inequi-

valent OPDs, and hence ISGs, is always finite.

Each space-group IR is associated with a k

vector in the first Brillouin zone. IRs defined at

distinct k vectors (not related by a reciprocal-

lattice translation or a point operator of G0) are

distinct. A k vector on the surface of the

symmetry-unique portion of the Brillouin zone

lies on either a vertex (a special point of

symmetry), an edge (a line of symmetry) or a

face (a plane of symmetry). Otherwise, it is a

general k vector in the zone interior.

In 1988, Stokes and Hatch published a

exhaustive list of the ISGs arising from the

complete space-group IRs at each of the special

k points of each of the 230 crystallographic

space groups, along with detailed information

about each one. Shortly afterwards, Stokes and

Hatch wrote an interactive software program

called ISOTROPY, which later became the first

component of what we now call the ISOTROPY

Software Suite of online crystallographic soft-

ware tools (http://iso.byu.edu). The ISOTROPY

program performs real-time calculation of the

IRs and ISGs at special or non-special k vectors,

including superpositions of multiple IRs. The ISG that results

from the superposition of multiple IRs is simply the inter-

section of the ISGs of the individual IRs. ISOTROPY’s most

important feature is its ability to explore the symmetry modes

of a crystal structure that has been distorted via the IRs of its

parent space group.

Because ISOTROPY is a command-line program with its

own internal language and syntax and a very flexible feature

set, considerable technical knowledge is required to use it

effectively. The steep learning curve may have discouraged

some potential users. More recently, Campbell et al. (2006)

developed a new tool called ISODISTORT, which targets the

needs of the materials research community, requires a

minimum of technical knowledge beyond that common to

those familiar with mainstream crystallographic tools, and
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Figure 1
Detailed descriptions of each of the ISGs of each of the IRs of space group Pm3m (No.
221) at k = ð0; 0; 0Þ, also called the � (GM) point. The dimension of the matrices of a given
IR is equal to the number of components of the OPD vector. Observe differences in the
space group, subgroup index, continuity and ferroic species from one IR and ISG to the
next.



allows one to quickly generate and

explore the distorted structures

generated by the space-group IRs

of a specific user-uploaded parent

structure. Its applications are

similar to those of the AMPLI-

MODES tool from the Bilbao

Crystallographic Server (Oroben-

goa et al., 2009).

We report here on the ISO-

SUBGROUP software, the newest

online component of the ISO-

TROPY Software Suite, which fills

an important gap in the capabilities

of the other components of the

suite. It combines much of the

generality of the original ISO-

TROPY tool with the user-friendly

interface of ISODISTORT. Where-

as ISODISTORT uses only the IRs

that produce common distortion

types (e.g. lattice strains, atomic

displacements, magnetic moments

and occupational orderings) of a

user-specified parent space-group

symmetry and crystal structure,

ISOSUBGROUP will generate the

ISGs of any IR of any space group.

Unlike ISOTROPY or ISODIS-

TORT, ISOSUBGROUP cannot

be used to project or decompose

the symmetry modes of a distorted

structure. Its key feature is that it

provides a great deal of general

information about each ISG that is

not tied to a specific parent struc-

ture.

ISOSUBGROUP provides drop-

down menus for selecting a parent

space group, a k vector, and an IR

of that space group and k vector.

For each inequivalent OPD of the

IR, a wealth of information about

the resulting ISG is provided.

Check boxes allow the user to

determine which information will

actually be displayed. The user has

the option of simultaneously

generating ISG output for all of the

IRs defined at a single k vector.

They can also specify multiple IRs

(at one or more k vectors) to be

superposed, and generate the

resulting ISG output.

(1) The IR is indicated in the

notation of Cracknell et al. (1979).

The order parameter direction is
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Figure 2
Detailed descriptions of each of the equivalent domains of each of the ISG of the X3+(a,b,0) IR/OPD of
space group Pm3m (No. 221) at k = ð1=2; 0; 0Þ. Observe differences in the OPD, active k vectors, basis and
origin from one domain to the next.

Figure 3
Detailed descriptions of each of the secondary order parameters of each of the ISGs of the R3+ IR of
space group Pm3m (No. 221) at k = ð1=2; 1=2; 1=2Þ. Each entry whose OPD label begins with ‘SOP’
indicates a secondary order parameter of the current ISG. The data set for a given ISG begins with an
entry for its primary order parameter the OPD label of which does not begin with ‘SOP’. Observe that the
ISGs of the special ða; 0Þ and ð0; aÞ OPDs both have three secondary order parameters, while the general
ða; bÞ OPD has five secondary order parameters.



expressed as an n-dimensional vector g with one or more free

parameters, following the notation used by the ISOTROPY

Software Suite (Stokes & Hatch, 1988; Campbell et al., 2006).

The components of the OPD are actually partitioned into

blocks of equal length, one for each of the arms of the star of

the k vector, as described by Stokes et al. (2013). Only the k

vectors of the star of k, i.e. those corresponding to the nonzero

components of the OPD, are displayed. The OPDs of super-

posed IRs are strung together into a single joint OPD, but

visually separated by semicolons.

(2) The basic properties of each ISG are presented,

including (a) the basis vectors of the subgroup lattice in terms

of the basis vectors of the parent lattice, (b) the origin of the

subgroup with respect to the origin of the parent, given in

parent coordinates, (c) the size of the subgroup’s primitive

unit cell relative to the parent’s primitive unit cell, and (d) the

index of the subgroup, which is the ratio of the number of

parent operators to the number of subgroup operators.

(3) The properties of the IR matrices and OPD of the ISG

determine whether or not a phase transition from the parent

symmetry to the subgroup symmetry is allowed to be contin-

uous via either Landau theory or renormalization-group

theory. Those for which continuity is allowed by Landau

theory have been further tested under the more stringent

conditions of renormalization-group theory. ISOSUBGROUP

reports ‘no’ for an ISG rejected by either theory, and ‘yes’

otherwise (Kim, Hatch & Stokes, 1986; Kim, Stokes & Hatch,

1986; Stokes et al., 1987).

(4) The ferroic order-parameter types reported by

ISOSUBGROUP include ferroelectric (fc), ferroelastic (fs)

and ferromagnetic (fm). If the ISG allows the ferroic species

as a primary order parameter, its label is prefaced by the letter

‘p’ for ‘proper’ (e.g. pfc for proper ferroelectric). If the ISG

only allows the ferroic species as a secondary order parameter,

its label is prefaced by the letter ‘i’ for ‘improper"’ (e.g. ‘ifs’ for

improper ferroelelastic).

(5) The number of domains of an ISG is equal to its index,

one for each coset of the subgroup with respect to the parent.

Each coset is represented by a symmetry operator of the

parent that is not retained in the subgroup. If requested by the

user, ISOSUBGROUP displays a complete ISG entry for each

domain of the ISG. The domains of an ISG are indexed with

three integers, which indicate (1) the external orientation

domain of the subgroup lattice relative to the parent lattice,

(2) the internal orientation domain of the point group of the

subgroup relative to the point group of the lattice of the

subgroup, and (3) the translation domain of the subgroup

origin relative to the parent origin.

(6) In addition to the primary IR and OPD used to generate

the ISG, ISOSUBGROUP can calculate each of the secondary

IRs and secondary order parameters (SOPs) that are

compatible with the ISG (i.e. they can contribute order

parameters to the ISG without further lowering the symmetry

but may not generate the ISG alone). A full ISG entry is

displayed for each secondary IR/OPD if requested by the user,

and can be distinguished from the primary ISG entry by the

letters ‘SOP’ at the front of the ISG label. The subgroup

details presented in an SOP entry are for the ISG that would

result if the SOP were considered by itself. Note that

ISOSUBGROUP will not allow the user to display both

domain and SOP information at the same time owing to the

lengthy pages that would result.

As a result of new developments within the ISOTROPY

Software Suite (Stokes et al., 2007, 2011, 2013; Stokes &

Campbell, 2016; van Smaalen et al., 2013), ISOSUBGROUP is

able to treat ISGs with superspace-group symmetry, which

result from incommensurate order parameters. In such a case,

the user must specify the number of incommensurate k vectors

for each IR. When employing incommensurate k vectors, the

parent is implicitly assumed to be a superspace extension of

the specified space group, with extra dimensions for continu-

ously infinite phase shifts of zero-amplitude modulations.
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Figure 4
Detailed descriptions of each of the ISGs resulting from the intersection of the magnetic mGM4+ IR at k = ð0; 0; 0Þ with the nonmagnetic M3+ IR at k =
ð1=2; 1=2; 0Þ, for space group Pm3m (No. 221). Note that the magnetic space group of each ISG is indicated.



Some ISG information is not presented for incommensurate

cases: active k vectors, which are inferable from the super-

space-group symbol, secondary order parameters associated

with higher harmonics of the fundamental modulation vectors,

the domains of the basic space group of the ISG (may be

added later) and phase-transition continuity indicators (may

be added later).

ISOSUBGROUP further allows the user to include

magnetic IRs, which result in ISGs with magnetic space-group

symmetry (or even magnetic superspace-group symmetry in

incommensurate cases). When magnetic IRs are selected, the

parent symmetry is implicitly assumed to be the paramagnetic

(gray) symmetry group obtained by adding a pure time

reversal to the specified space group.

The screen shots in Figs. 1–5 demonstrate ISOSUBGROUP

output for several specific examples involving parent space

group Pm3m. These examples were selected to illustrate a

variety of different scenarios, including output from all IRs

and OPDs at a single k vector, multi-domain output for a

specific IR/OPD, secondary order parameter output for a

specific IR/OPD, a magnetic ISG, an incommensurate ISG,

and ISGs resulting from the superposition of IRs at multiple k

vectors. The details of each example are provided in the

corresponding figure caption.

ISOSUBGROUP provides online menu-driven access to

isotropy subgroups of the irreducible representations of any

crystallographic space group at arbitrary superpositions of

commensurate and incommensurate k vectors, including

magnetic cases, without reference to any parent structure or

order-parameter type. The output for each isotropy subgroup

includes information about the symmetry group, basis and

origin relative to the parent, active k vectors, ferroic species,

phase-transition continuity, subgroup domains, and secondary

order parameters. It builds on and complements other

programs of the ISOTROPY Software Suite by combining the

generality of the ISOTROPY tool with the user-friendly

interface of ISODISTORT, while focusing on isotropy

subgroups rather than projected order parameters.
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Figure 5
Detailed descriptions of each of the ISGs of each of the IRs of space group Pm3m (No. 221) at incommensurate modulation vector k = ð0; �; 0Þ. The
symmetry group of each ISG in this case is a (3 + 1)-dimensional superspace group.
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